Power Transformer Failure Prediction: Classification in Imbalanced Time Series
نویسندگان
چکیده
منابع مشابه
An Effective Method for Imbalanced Time Series Classification: Hybrid Sampling
Most traditional supervised classification learning algorithms are ineffective for highly imbalanced time series classification, which has received considerably less attention than imbalanced data problems in data mining and machine learning research. Bagging is one of the most effective ensemble learning methods, yet it has drawbacks on highly imbalanced data. Sampling methods are considered t...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملMultivariate Time Series Prediction via Temporal Classification
One of the important problems in many process industries is how to predict the occurrence of abnormal situations ahead of time in a multivariate time series environment. For example, in an oil refinery, hundreds of sensors (process variables) are installed at different sections of a process unit. These sensors constantly monitor the development of every stage of the process. Typically, each pro...
متن کاملRecurrent Radial Basis Function Network for Failure Time Series Prediction
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically r...
متن کاملCombined Prediction of Wind Power with Chaotic Time Series Analysis
Wind power prediction is one of the most significant technologies to promote the capability of the whole power system that takes in wind electricity. A combined model for wind power forecasting is presented to decrease the influence of reconstructed parameters by chaotic time series analysis and the neural networks (NNs) in this work. The combined model respectively makes use of linear weighted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: U.Porto Journal of Engineering
سال: 2018
ISSN: 2183-6493
DOI: 10.24840/2183-6493_003.002_0004